A Low Delay and Fast Converging Improved Proportionate Algorithm for Sparse System Identification
نویسندگان
چکیده
A sparse system identification algorithm for network echo cancellation is presented. This new approach exploits both the fast convergence of the improved proportionate normalized least mean square (IPNLMS) algorithm and the efficient implementation of the multidelay adaptive filtering (MDF) algorithm inheriting the beneficial properties of both. The proposed IPMDF algorithm is evaluated using impulse responses with various degrees of sparseness. Simulation results are also presented for both speech and white Gaussian noise input sequences. It has been shown that the IPMDF algorithm outperforms the MDF and IPNLMS algorithms for both sparse and dispersive echo path impulse responses. Computational complexity of the proposed algorithm is also discussed.
منابع مشابه
Frequency-Domain Adaptive Algorithm for Network Echo Cancellation in VoIP
We propose a new low complexity, low delay, and fast converging frequency-domain adaptive algorithm for network echo cancellation in VoIP exploiting MMax and sparse partial (SP) tap-selection criteria in the frequency domain. We incorporate these tap-selection techniques into the multidelay filtering (MDF) algorithm in order to mitigate the delay inherent in frequency-domain algorithms. We illu...
متن کاملBlock Sparse Memory Improved Proportionate Affine Projection Sign Algorithm
A block sparse memory improved proportionate affine projection sign algorithm (BS-MIP-APSA) is proposed for block sparse system identification under impulsive noise. The new BS-MIP-APSA not only inherits the performance improvement for block-sparse system identification, but also achieves robustness to impulsive noise and the efficiency of the memory improved proportionate affine projection sig...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملProportionate Minimum Error Entropy Algorithm for Sparse System Identification
Sparse system identification has received a great deal of attention due to its broad applicability. The proportionate normalized least mean square (PNLMS) algorithm, as a popular tool, achieves excellent performance for sparse system identification. In previous studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are based on the mean square error (MSE) crit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Audio, Speech and Music Processing
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007